
CA Client Programming in Perl and C

Andrew Johnson — AES/SSG, Argonne

Includes material from:

Ken Evans, Argonne

Kay Kasemir, ORNL

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

2

Task: Write a Channel Access client

■ Many possible approaches and choices of language
■ Assuming that you need more than you can do with
● MEDM/EDM/CaQtDm/EpicsQt display manager
● CSS/Boy with its rules and scripts

■ These are commonly used options
● Shell or Perl script that calls the caget/caput/camonitor programs
● Python program with PyEpics or EPICS Cothread bindings
● Matlab/Octave/Scilab with MCA or LabCA bindings
● State Notation Language (SNL) program with the Sequencer
● Perl program with CA bindings
● C++ program with EPICS Qt bindings
● Java program calling CAJ (pure Java) or JCA (JNI)
● C/C++ program calling CA library

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

3

SNL programs speak CA natively

■ This piece of SNL handles all the connection management and data type handling:
● double value;

assign value to "fred";
monitor value;

■ Extend into a basic 'camonitor':
● evflag changed;

sync value changed;

ss monitor_pv
{

state check
{
 when (efTestAndClear(changed))
 {
 printf("Value is now %g\n", value);
 } state check
}

}

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

4

Quick Hacks, Simple Scripts

■ In many cases, scripts writen in bash/perl/python/php can just invoke the
command-line ‘caget’ and ‘caput’ programs

■ Useful for reading/writing one or two PV values, not for subscribing to value updates
■ Quiz: Why would a loop that continually invokes ‘caget’ or ‘caput’ be bad?

■ CA Client library bindings are available for Perl, Python & PHP
● Perl bindings are included in EPICS Base (not available on MS Windows)
● Several different Python bindings are available

■ Much beter to use these for long-running scripts

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

5

Simple Script Example

#!/bin/env perl -w

caget: Get the current value of a PV
Argument: PV name
Result: PV value
sub caget {
 my ($pv) = @_;
 open(my $F, "-|", "caget -t $pv") or die "Cannot run 'caget'\n";
 $result = <$F>;
 close $F;
 chomp $result;
 return $result;
}

Do stuff with PVs
my $fred = caget("fred");
my $jane = caget("jane");
my $sum = $fred + $jane;
printf("Sum: %g\n", $sum);

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

6

Channel Access for Perl, C and C++

 The Channel Access client library comes with EPICS base and is the basis for most of
the other language bindings

– Internally writen in C++ but API is pure C
– Main exception: Pure Java library ‘CAJ’

 Documentation:
– EPICS R3.14 Channel Access Reference Manual by Jeff Hill et al.
– CA - Perl 5 interface to EPICS Channel Access by Andrew Johnson
– In <base>/html, or from the EPICS web site

 This section covers
– Fundamental API concepts using Perl examples
– Some brief examples in C
– How to instantiate a template with some example C programs

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

7

CA Client APIs for Perl, C and C++

 Why teach the Perl API before C?
– Higher level language than C, no pointers needed
– Learn the main principles and library calls with less code
– Complete Perl programs can fit on one slide

 The Perl 5 API is a thin wrapper around the C library
– Built with Base on most Unix-like workstation platforms (not Windows)
– Provides the same interface model that C code uses
– Unless you’re interfacing to specific libraries or need very high performance, Perl scripts

may be sufficient for most tasks

 Other APIs like Python and Java are less like the C library
– Good for writing client programs in Python/Java, but not for learning the C library

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

8

Search and Connect to a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

printf "PV: %s\n", $chan->name;
printf " State: %s\n", $chan->state;
printf " Host: %s\n", $chan->host_name;
my @access = ('no ', '');
printf " Access rights: %sread, %swrite\n",
 $access[$chan->read_access], $access[$chan->write_access];
printf " Data type: %s\n", $chan->field_type;
printf " Element count: %d\n", $chan->element_count;

 This is the basic cainfo program in Perl (without error checking)

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

9

Get and Put a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

$chan->get;
CA->pend_io(1);
printf "Old Value: %s\n", $chan->value;

$chan->put($ARGV[1]);
CA->pend_io(1);

$chan->get;
CA->pend_io(1);
printf "New Value: %s\n", $chan->value;

 This is the basic caput program in Perl (without error checking)

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

10

Monitor a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

$chan->create_subscription('v', \&val_callback);
CA->pend_event(0);

sub val_callback {
 my ($chan, $status, $data) = @_;
 if (!$status) {
 printf "PV: %s\n", $chan->name;
 printf " Value: %s\n", $data;
 }
}

 This is a basic camonitor program in Perl (without error checking)

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

11

Error Checking

 What happens if the PV search fails, e.g. the IOC isn't running, or it's busy and takes
longer than 1 second to reply?

– CA->pend_io(1) times out
– CA library throws a Perl exception (die)
– Program exits after printing:

• ECA_TIMEOUT - User specified timeout on IO operation expired at test.pl line 5.

 We can trap the Perl exception using
– eval {CA->pend_io(1)};

if ($@ =~ m/^ECA_TIMEOUT/) { ... }

 How can we write code that can recover from failed searches and continue doing
useful work?

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

12

Event-driven Programming

 First seen when setting up the CA monitor:
– $chan->create_subscription('v', \&callback);

CA->pend_event(0);

– The CA library executes our callback subroutine whenever the server provides a new data
value for this channel

– The CA->pend_event() routine must be running for the library to execute callback
routines

• The Perl CA library is single threaded
• Multi-threaded C programs can avoid this requirement

 Most CA functionality can be event-driven

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

13

Event-driven PV Search and Connect

use lib '/path/to/base/lib/perl';
use CA;

my @chans = map {CA->new($_, \&conn_callback)} @ARGV;
CA->pend_event(0);

sub conn_callback {
 my ($chan, $up) = @_;
 printf "PV: %s\n", $chan->name;
 printf " State: %s\n", $chan->state;
 printf " Host: %s\n", $chan->host_name;
 my @access = ('no ', '');
 printf " Access rights: %sread, %swrite\n",
 $access[$chan->read_access], $access[$chan->write_access];
 printf " Data type: %s\n", $chan->field_type;
 printf " Element count: %d\n", $chan->element_count;
}

 The cainfo program using callbacks

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

14

Event-driven PV Monitor

use lib '/path/to/base/lib/perl';
use CA;

my @chans = map {CA->new($_, \&conn_cb)} @ARGV;
CA->pend_event(0);

sub conn_cb {
 my ($ch, $up) = @_;
 if ($up && ! $monitor{$ch}) {
 $monitor{$ch} = $ch->create_subscription('v', \&val_cb);
 }
}

sub val_cb {
 my ($ch, $status, $data) = @_;
 if (!$status) {
 printf "PV: %s\n", $ch->name;
 printf " Value: %s\n", $data;
 }
}

 The camonitor program using callbacks

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

15

Data Type Requests

 Most data I/O routines handle data type automatically
– $chan->get fetches one element in the channel’s native type

• Value is returned by $chan->value
• Arrays are not supported, no type request possible

– $chan->get_callback(SUB) fetches all elements in the channel’s native data type
• Optional TYPE and COUNT arguments to override

– $chan->create_subscription(MASK, SUB) requests all elements in the channel’s
native type

• Optional TYPE and COUNT arguments to override

– $chan->put(VALUE) puts values in the channel’s native type
• VALUE may be a scalar or an array

– $chan->put_callback(SUB, VALUE) puts values in the channel’s native data type
• VALUE may be a scalar or an array

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

16

Specifying Data Types

 The TYPE argument is a string naming the desired DBR_xxx type
– See the CA Reference Manual for a list

 The COUNT argument is the integer number of elements

 If you request an array, the callback subroutine’s $data argument becomes an array
reference

 If you request a composite type, the callback subroutine’s $data argument becomes
a hash reference

– The hash elements are different according to the type you request
– See the Perl Library documentation for details

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

17

Simple Channel Access calls from C

 Main header file
– #include <cadef.h>

– This also includes db_access.h, caerr.h and caeventmask.h

 Channels are referred to using as a chid, a pointer to an opaque structure
– chid fred;

 Connect to a channel
– int status = ca_create_channel("fred", NULL, NULL, 0, &fred);

SEVCHK(status, "Create channel failed");
status = ca_pend_io(1.0);
SEVCHK(status, "Channel connection failed")

 The SEVCHK(status, text) macro is useful for simple programs
– Aborts with an error message on bad status

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

18

What’s in a chid?

 We can get channel information from a connected chid
– const char *ca_state_to_text[4] = {"Never connected",

 "Not connected", "Connected", "Closed"};

printf("PV: %s\n", ca_name(fred));
printf("State: %s\n", ca_state_to_text[ca_state(fred)]);
printf("Host: %s\n", ca_host_name(fred));
printf("Read: %s\n", ca_read_access(fred) ? "Y" : "N");
printf("Write: %s\n", ca_write_access(fred) ? "Y" : "N");
printf("Type: %s\n", dbr_type_to_text(ca_field_type(fred)));
printf("Count: %s\n", ca_element_count(fred));

 Tidy up after we’re finished with fred
– SEVCHK(ca_clear_channel(fred), "Clear channel failed");

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

19

Writing to a PV

 Assuming the chid fred is already/still connected
– SEVCHK(ca_put(DBR_STRING, fred, "10"), "Put failed");

ca_flush_io();

 If fred’s PV can hold an array of doubles
– dbr_double_t data[] = {1.0, 2.0, 3.0, 4.0, 5.0};

SEVCHK(ca_array_put(DBR_DOUBLE, 5, fred, data), "Put failed");
ca_flush_io();

 What other data types are available?
– See the db_access.h file in Base/include

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

20

Reading from a PV

 Still assuming fred is connected
– struct dbr_time_double val;

const char * severity_to_text[4] = {
 "No alarm", "Minor", "Major", "Invalid"};

SEVCHK(ca_get(DBR_TIME_DOUBLE, fred, &val), "Get failed");
SEVCHK(ca_pend_io(1.0), "I/O failed");
printf("PV: %s\n", ca_name(fred));
printf("value: %g\n", val.value);
printf("severity: %s\n", severity_to_text[val.severity]);
printf("status: %hd\n", val.status);

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

21

Base caClient template

 EPICS Base Includes a makeBaseApp.pl template that builds two basic CA client
programs writen in C

– Type these commands:
mkdir clients; cd clients
makeBaseApp.pl -t caClient clientApp
make

– Try running the result like this:
bin/linux-x86/caExample id01:shutter
echo id01:shutter > pvfile
bin/linux-x86/caMonitor pvfile

– Then read the source files in your clientApp directory, compare with the reference
manual, and edit/extend to suit your needs

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

22

CaClient's caExample.c

 Minimal CA client program
 Fixed timeout, waits until data arrives
 Requests everything as ‘DBR_DOUBLE’

– … which results in values of type ‘double’
– See db_access.h header file for all the DBR_… constants and the resulting C types and

structures
– In addition to the basic DBR_type requests, it is possible to request packaged atributes

like DBR_CTRL_type to get { value, units, limits, …} in one request

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

23

Excerpt from db_access.h

/* values returned for each field type
 …
 * DBR_DOUBLE returns a double precision floating point number
 …
 * DBR_CTRL_DOUBLE returns a control double structure (dbr_ctrl_double)
 */

…

/* structure for a control double field */
struct dbr_ctrl_double{
 dbr_short_t status; /* status of value */
 dbr_short_t severity; /* severity of alarm */
 dbr_short_t precision; /* number of decimal places */
 dbr_short_t RISC_pad0; /* RISC alignment */
 char units[MAX_UNITS_SIZE]; /* units of value */
 dbr_double_t upper_disp_limit; /* upper limit of graph */
 dbr_double_t lower_disp_limit; /* lower limit of graph */
 dbr_double_t upper_alarm_limit;
 dbr_double_t upper_warning_limit;
 dbr_double_t lower_warning_limit;
 dbr_double_t lower_alarm_limit;
 dbr_double_t upper_ctrl_limit; /* upper control limit */
 dbr_double_t lower_ctrl_limit; /* lower control limit */
 dbr_double_t value; /* current value */
};

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

24

caClient's caMonitor.c

 Beter CA client program
– Registers callbacks to get notified when connected or disconnected
– Subscribes to value updates instead of waiting
– … but still uses one data type (DBR_STRING) for everything

APS EPICS Training • Andrew Johnson • 2014-10-16 • CA Client Programming in Perl and C

25

Ideal CA client?

■ Register and use callbacks for everything
● Event-driven programming; polling loops or fixed time outs

■ On connection, check the channel’s native type
● Limit the data type conversion burden on the IOC

■ Request the matching DBR_CTRL_type once
● this gets the full channel detail (units, limits, …)

■ Then subscribe to DBR_TIME_type for time+status+value updates
● Now we always stay informed, yet limit the network traffic
● Only subscribe once at first connection; the CA library automatically re-activates

subscriptions after a disconnect/reconnect

■ This is what CSS, EDM, ALH etc. do
● Quirk: Most don't learn about run-time changes of limits, units, etc.

□ Recent versions of CA support DBE_PROPERTY monitor event type
□ This will solve that issue, once the programs and gateway use it

	Slide 1
	Slide 2
	Side Note: SNL just to get CAC help
	Quick Hacks, Scripts
	Perl Example
	Channel Access
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	makeBaseApp.pl
	makeBaseApp's caExample.c
	Excerpt from db_access.h
	makeBaseApp's caMonitor.c
	Ideal CA client?

